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Abstract. The microscopic mechanisms of refractive indices, birefringence, spontaneous
polarization and linear electro-optic effects are examined for KNbO3 using a microscopic model
which takes into account a quantum method based upon the orbital approximation and the
dipole–dipole interaction due to the local field acting on the constituent ions. It is found that
the electronic polarizabilities play a major role in these calculations and that the birefringence δn

and the linear electro-optic coefficients are in good agreement with the experimental data.

1. Introduction

Potassium niobate, KNbO3, like barium titanate, BaTiO3, is a crystal of the perovskite family
and has been the object of many theoretical and practical investigations. This material exhibits
a sequence of ferroelectric phase transitions. At high temperature, KNbO3 is para-electric
with a cubic structure. Upon cooling, this material undergoes successive structural phase
transitions [1]. All these phase transitions are strongly of first-order character and related to a
large thermal hysteresis [2], a remarkable optical anisotropy [3] and large electro-optic effects
[4–7].

In a previous work, Günter has measured the temperature dependence of the electro-optic
coefficient rc. It is found that this coefficient depends strongly on the temperature [4]; it
increases when the temperature approaches the cubic–tetragonal transition. Previous works
on ferroelectrics and optical properties of KNbO3 [8], and linear electro-optic coefficients r13

and r33 of pure and Fe-doped BaTiO3, of the same family [9, 10], show that the electronic
polarizabilities play an important role.

The aim of this paper is to study the temperature dependence of the refractive indices,
the birefringence, the spontaneous polarization and the linear electro-optic coefficients rc =
R33 − (n0/ne)

3r13 and r42 of KNbO3 in the tetragonal phase by using a microscopic model
which takes account of the electronic polarizabilities of the constituent ions.

In this article we discuss, in section 2, the electronic polarizabilities of the ions of
KNbO3 by using a quantum method based upon the orbital approximation, in section 3, the
dipole–dipole interaction due to the local field acting on the constituent ions, in section 4, the
electro-optic effects description. Finally, section 5 is devoted to some results and discussions.

0953-8984/00/102317+15$30.00 © 2000 IOP Publishing Ltd 2317
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2. Quantum method description

In order to compute the electronic polarizabilities of tetragonal KNbO3, we used a quantum
method based upon the orbital approximation. In this approach, each ion is considered as
a combination of a core (inner electrons and nucleus) and a shell (outer electron). The
Hamiltonian of the core–shell system is written

H = H0 + H1 (1)

with

H0 = p2

2m
− Z

R
e2 (2)

H1 = eE · R (3)

where H0 represents the Hamiltonian in the absence of the local field and H1 the electrostatic
energy under the electric field. For small values of the electric field, the energy H1 can be
considered as a perturbation. In equation (2), Z is the effective charge of the core for the outer
electron considered. In (3), E is the local field acting on a given ion and R is the distance
from the core to any point of the wavefunction describing the shell of this ion.

Writing the wavefunction in E = 0 as ψ0, we assume that the wavefunction of the
core–shell system under the electric field can be expanded as a linear series of perturbations.
In this case, it can be described by the variational parameter λ as [11]

ψ(λ) = (1 + λE · R)ψ0. (4)

By using the variational principle, namely dI = 0, where I is the energy of the system we can
express λ by the following equation (see the appendix)

λ = − 2

aBeE2

∑
k

E2
k 〈x2

k 〉
[

1 − 4

a2
Be2E4

(∑
k

E2
k 〈x2

k 〉
)3]

(5)

where aB is the Bohr radius h̄2/me2.
The dipole moment p of the core–shell system described by the wavefunction ψ is

expressed as

p = (−e)
∫

ψ∗Rψ dv∫
ψ∗ψ dv

. (6)

The component of p in the l-direction (l = 1, 2, 3) is written

pl = (−e)
∫

ψ∗(λ)xlψ(λ) dv∫
ψ∗(λ)ψ(λ) dv

= −2eλEl〈x2
l 〉

1 + λ2
∑

l E2
l 〈x2

l 〉
. (7)

By replacing λ by its expression in the last equation, and by expanding in (
∑

k E2
k 〈x2

k 〉)3/a2
Be2E4

which is much less than one (this assumption can be justified by using the values of the local
field reported in table 5), we obtain

pl = 4
∑

k E2
k 〈x2

k 〉
aBE2

[
1 − 8

a2
Be2E4

(∑
k

E2
k 〈x2

k 〉
)3]

El〈x2
l 〉. (8)

In the case of tetragonal KNbO3, the component of the local field in the direction of the
spontaneous polarization, namely the 3-direction, is greater than those in the other directions.
This implies that∑

k

E2
k

E2
〈x2

k 〉 ∼= 〈x2
3 〉 (9)
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then

pl = 4〈x2
3 〉〈x2

l 〉
aB

(
1 − 8〈x2

3 〉3

a2
Be2

E2

)
El. (10)

The (k, l) element of the electronic polarizability tensor is determined as follows [12]:

αkl = ∂pk

∂El

. (11)

By using the equation (10), we can express αkl for a considered r-orbital as follows:

αkl,r = α∗
k,P [δkl − θ∗

r (E2δkl + 2EkEl)] (12)

where

α∗
k,r = 4

aB

〈x2
3 〉r〈x2

k 〉r (13)

and

θ∗
r = 8

a2
Be2

〈x2
3 〉3

r . (14)

In equation (12) δkl represents the Kronecker symbol.
We assume the electronic polarizability of a considered j -ion in the k-direction (k =

1, 2, 3) as the sum of the contribution of respective orbitals, namely that which can be
represented by

αkl(j) =
∑

r

αkl,r (j). (15)

Equation (12) can then be rearranged as

αkl(j) = α∗
k (j)[δkl − θk(j)(E2(j)δkl + 2Ek(j)El(j))] (16)

where

α∗
k (j) =

∑
r

α∗
k,r (j) (17)

and

θk(j) =
∑

α∗
k,r (j)θ∗

r (j)∑
r α∗

k,r (j)
. (18)

For the calculation of the electronic polarizabilities of the K+, Nb5+ and O2− ions we have
used the Slater-type orbitals [11]

ψnim = Rnl(R)Ylm(θ, ϕ) (19)

where n, l and m represent the principal, azimuthal and magnetic quantum numbers,
respectively, and R, θ and ϕ are the spherical coordinates.

The radial part Rnl(R) of equation (19) can be written [13]

Rnl(R) = (2#nl)
n′+(1/2)(2n′!)−1/2Rn′−1 e−#nl/R (20)

with

#nl = Znl

(n′aB)
(21)

where n′ represents the effective quantum number and n represents the principal quantum
number.
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In equation (19), Ylm(θ, ϕ) are the spherical harmonics represented as [13]

Ylm(θ, ϕ) = (−1)(m+(|m|/2))

(√
2l + (l − |m|)!
4π(l + |m|)!

)1/2

P
|m|
l (cos θ) eimϕ (22)

by the associated Legendre functions P
|m|
l (cos θ).

In order to take into account the directional character of the chemical bond, one usually
uses the real forms of the wavefunctions, obtained by linear combination [14].

By using the equations (13) and (14) and the following expressions of 〈x2
k 〉r (k = 1, 2, 3),

we can determine α∗
k,r (j) and θ∗

r (j) of a given r orbital of the j -ion:

〈x2
1 〉r = 〈R2〉nl〈sin2 θ cos2 ϕ〉lm (23)

〈x2
2 〉r = 〈R2〉nl〈sin2 θ sin2 ϕ〉lm (24)

〈x2
3 〉r = 〈R2〉nl〈cos2 θ〉lm (25)

with

〈R2〉nl = n′2(n′ + 1)

(
n′ +

1

2

)
a2

B

Z2
nl

. (26)

The values of 〈sin2 θ cos2 ϕ〉lm, 〈sin2 θ sin2 ϕ〉lm and 〈cos2〉lm for the orbitals considered
are reported in table 1.

Table 1. The values of 〈sin2 θ cos2 ϕ〉lm, 〈sin2 θ sin2 ϕ〉lm and 〈cos2 θ〉lm for the orbitals considered.

Orbital 〈sin2 θ cos2 ϕ〉lm 〈sin2 θ sin2 ϕ〉lm 〈cos2 θ〉lm
s 1

3
1
3

1
3

px
3
5

1
5

1
5

py
1
5

3
5

1
5

pz
1
5

1
5

3
5

dx2−y2
3
7

3
7

1
7

dxz
3
7

1
7

3
7

dz2
5
21

5
21

11
21

dyz
1
7

3
7

3
7

dxy
3
7

3
7

1
7

In order to calculate the coefficients θk(j) of a given j -ion, we used an anisotropic effective
charge for the outer electronic layer of this ion, and fitted its components in such a way that
the calculated values of the free electronic polarizabilities α∗

1(j), α∗
2(j) and α∗

3(j) coincided
with the measured value of the free electronic polarizability αexp(j) of the same ion. The free
electronic polarizabilities are calculated in E = 0.

The effective charges of the outer layers are determined by the Slater rules [16], and their
fitted values are reported in table 2. The values of the measured αexp(j) and the calculated
θk(j) are reported in table 3.

Finally, the elements of the electronic polarizabilities tensor of the j -ion, which are used
in the following section, are deduced from table 3 and the next relation.

αkl(j) = αexp(j)[δkl − θk(j)(E2(j)δkl + 2Ek(j)El(j))] (27)

In the following section, local field E is labelled Eloc.
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Table 2. The fitted values of the effective ionic charges of the outer layers of the constituent ions
of KNbO3.

j -ion Effective ionic charges

K+ Z
(x)
3sp = 7.202 94 Z

(y)

3sp = 7.202 94 Z
(z)
3sp = 8.558 01

Nb5+ Z
(x)
3d = Z

(x)
4sp = 20.314 43 Z

(y)

3d = Z
(y)

4sp = 20.314 43 Z
(z)
3d = Z

(z)
4sp = 24.347 19

O2− Z
(x)
2sp = 3.335 11 Z

(y)

2sp = 3.335 11 Z
(z)
2sp = 3.95895

Table 3. The measured free electronic polarizabilities αexp (in Å3) and the calculated values of the
coefficients θk (in 10−16 CGS esu) of the constituent ions of KNbO3.

j -ion αexp(j) θ1(j) θ2(j) θ3(j)

K+ 1.9458 110.520 110.520 206.290

Nb5+ 0.1859 1.582 1.582 2.881
O2− 2.3940 152.860 152.860 285.850

3. Dipole–dipole interaction

Writing the strains parallel to the [100], [010] and [001] directions as *1, *2 and *3,
respectively and the shearings concerning the (100), (010) and (001) planes as δ1, δ2 and
δ3, respectively, we can determine the distance r(i, j) between the i- and j -ions as follows:

r(i, j) =
( 1 + *1 δ3 δ2

δ3 1 + *2 δ1

δ2 δ1 1 + *3

)
r(i, j)0 + (s(i) − s(j)) (28)

where r(i, j)0 represents the distance between the i- and j -ions in the cubic phase and s(i)

and s(j) represent the shifts of the i- and j -ions respectively.
In order to study the electro-optic effects, we have taken account of the variation of the

strains, shearings and the ionic shifts under the bias electric field Ebias . These variations are
determined as follows:

*k = (*k)
0 +

3∑
l=1

dlkE
bias
l (29)

δk = (δk)
0 +

3∑
l=1

dl(k+3)E
bias
l (30)

sk(j) = (sk(j))0 +
3∑

l=1

hkl(j)Ebias
l (31)

where (*k)
0, (δk)

0 and (sk(j))0 represent the spontaneous strains, shearings and ionic shifts
respectively, dlk are the piezoelectric coefficients and hkl(j) represents the induced shift of the
j -ion per unit of field.

The volume of the unit cell can be written as

v = a3
0[(1 + *1)(1 + *2)(1 + *3) − (1 + *1)(δ1)

2 − (1 + *2)(δ2)
2 − (1 + *3)(δ3)

2

+2δ1δ2δ3] (32)

where a0 is the lattice constant in the cubic phase.
The local field acting on the i-ion in the k-direction is expressed as [16]

Eloc
k (i) = Eext

k +
5∑

j=1

3∑
k′=1

Tkk′(i, j)pk′(i, j) (33)
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with

Tkk′(i, j) =
∑
l,m,n

3rk(i, j)rk′(i, j) − δkk′ ‖r(i, j)‖2

‖r(i, j)‖5
. (34)

In equation (33), Eext represents an external electric field, which is in general the sum of
the bias field Ebias and the optical electric field Eopt : Eext = Ebias + Eopt . In equation (34)
the indices (l, m, n) represent the coordinates of a unit cell in the whole lattice: δkk′ is the
Kronecker symbol; the indices i and j represent the constituent ions of the unit cell. The
dipole moment along the k′-direction, p′

k(i, j), can be expressed as

pk′(i, j) = pe
k′(j) + pi

k′(i, j) (35)

where

pe
k′(j) =

3∑
l=1

αk′l(j )Eloc
l (j) (36)

represents the electronic dipole moment and

pk′i (i, j) = Z∗
k′(j)e(sk′(j) − sk′(i)) (37)

represents the ionic dipole moment in the k′-direction. In equation (36), αk′l(j ) represents the
(k′l) element of the electronic polarizability of the j -ion given by equation (27), and Z∗

k′(j) in
equation (37) represents the effective ionic charge in the k′-direction of the j -ion. The local
field acting on the i-ion on the k-direction can be written as

5∑
j=1

3∑
l=1

Skl(i, j)Eloc
l (j) = Qk(i) (38)

with

Skl(i, j) = δklδij −
3∑

k′=1

Tkk′(i, j)αk′l(j ) (39)

and

Qk(i) = Eext
k +

5∑
j=1

3∑
k′=1

Tkk′(i, j)pi
k′(i, j). (40)

By solving equation (38) we can determine the (l, j) component, Eloc
l (j), of the local

field. The total polarization is expressed as

Pk = 1

v

5∑
j=1

(pe
k(j) + pion

k (j)) (41)

with

pion
k (j) = Z∗

k (j)esk(j). (42)

The relation between the dielectric constant εk,l′ , polarization Pk and the bias electric field
Ebias

l′ is

εkl′ = δkl′ + 4π
∂Pk

∂Ebias
l′

. (43)

When the external field is of optical origin, the optical dielectric constant ε
opt

k,l′ can be
expressed as

ε
opt

kl′ = δkl′ + 4π
∂Pk

∂E
opt

l′
(44)
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where

∂Pk

∂E
opt

l′
= 1

v

5∑
j=1

∂pk(j)

∂E
opt

l′
. (45)

By using equation (36), the ∂pk(j)/∂E
opt

l′ term can be written as

∂pk(j)

∂E
opt

l′
=

3∑
l=1

αkl(j)
∂Eloc

l (j)

∂E
opt

l′
. (46)

Here the term ∂Eloc
l (j)/∂E

opt

l′ can be evaluated by solving the following equation:

5∑
j=1

3∑
l=1

Skl(i, j)
∂Eloc

l (j)

∂E
opt

l′
= δkl′ (47)

which is deduced from equation (38). In electromagnetism, one proves that in a dielectric
medium characterized by the optical dielectric impermeability tensor η̃opt = (ε̃opt )−1, the
refractive index, when the light is polarized in the direction of the unit vector u(u1, u2, u2), is
expressed as

n =
( 3∑

k=1

3∑
l=1

η
opt

kl ukul

)−1/2

. (48)

The refractive indices depend on the amplitude and the direction of the applied field (namely
n = n(Ebias)) because η̃opt = ˜opt (Ebias).

We distinguish here three particular cases.

• The light is polarized in the 1-direction (namely u1 = 1, u2 = u3 = 0). The refractive
index in this case is n1(E

bias) = (η
opt

11 )−1/2. When Ebias = 0, we obtain the ordinary
refractive index n0.

• The light is polarized in the 3-direction (namely u1 = u2 = 0, u3 = 1). The refractive
index in this case is n3(E

bias) = (η
opt

33 )−1/2. When Ebias = 0, we obtain the extraordinary
refractive index ne.

• The light is polarized at 45◦ in the x2x3 plane (namely u1 = 0, u2 = u3 = 2−1/2). The
refractive index in this case is n4(E

bias) = [(ηopt

22 + η
opt

23 + η
opt

32 + η
opt

33 )/2]−1/2. When
Ebias = 0, we obtain the refractive index n04.

4. Electro-optic effects description

In tetragonal KNbO3 only the electro-optic coefficients r13 = r23, r33 and r42 = r51 are non-null
[17]. The optical indicatrix, under the applied electric field Ebias can be written as(

1

n2
o

+ r13E
bias
3

)
(x2

1 + x2
2 ) +

(
1

n2
e

+ r33E
bias
3

)
x2

3 + 2r42E
bias
1 x1x3 + 2r42E

bias
2 x2x3 = 1 (49)

where x1, x2 and x3 are the Cartesian coordinates.
In general, the change of the optical dielectric impermeability *η

opt
m (m = 1, 2, 3, 4, 5, 6

is the contracted Voigt notation) [17], the electro-optic coefficient rml′ (l′ = 1, 2, 3), and the
applied field Ebias

l′ are connected by the following equation:

*ηopt
m =

3∑
l′=1

rml′E
bias
l′ . (50)
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When the bias field is parallel to the 3-axis, Ebias(0, 0, Ebias
3 ), the electro-optic coefficients

r13 and r33 can be expressed as

r13 = −2[n1(E
bias
3 ) − no]

n3
oE

bias
3

(51)

and

r33 = −2[n3(E
bias
3 ) − ne]

n3
eE

bias
3

. (52)

When the bias field is parallel to the 2-axis, Ebias (0, Ebias
2 , 0), the electro-optic coefficient

r42 can be expressed as

r42 = −2[n4(E
bias
2 ) − no4]

n3
o4E

bias
2

. (53)

The lattice parameters, the effective ionic charges, the spontaneous ionic shifts, the
piezoelectric coefficients and the dielectric constants are experimental data. The coefficients
hkl(j) can be evaluated by using a fit that takes into account the experimental data of the
dielectric constants.

When the applied electric field is along the 3-direction, we obtain

h13(j) = h23(j) = 0 and h33(j) 
= 0. (54)

These induced ionic shifts are the results of the Coulomb interactions induced by the
change of the local field under the bias electric field. We assume that

h33,j = h3Z
∗
3(j) (55)

where h3 is a constant.
When the applied electric field is along the 2-direction, we obtain

h12(j) = 0 h22(j) 
= 0 and h32(j) 
= 0. (56)

We assume that

h22(j) = h2Z
∗
2(j) and h32(j) = h2Z

∗
3(j) (57)

where h2 is a constant. In order to compute the h3 and h2 constants, we assume that εcal
33 = ε

exp

33
and εcal

22 = ε
exp

22 respectively.

5. Results and discussion

The calculations of the spontaneous polarization, the ordinary and extraordinary refractive
indices no and ne, respectively, the birefringence δn = nen − no, and the linear electro-
optic constants rc = r33 − (no/ne)

2r13 [4] and r42, are carried out at various temperatures in
the tetragonal phase of KNbO3. For our calculations, we used the temperature dependence
of the lattice parameters [18], the dielectric constants reported in table 4 and the effective
ionic charges reported in table 5. The spontaneous ionic shifts used in this calculation
(table 6) are calculated from a microscopic model based upon the mean field approximation
[19–21].

The spontaneous local field Espon corresponds to the value of the local electric field Eloc

in the absence of any external electric field (Eext = 0). The values of this field are calculated
by solving the self-consistent equation (equation (38)) after having evaluated the elements of
Skl (i, j ) (equation (39)) and Qk(i) (equation (40)). The calculation shows that the values of
the spontaneous local field acting on the constituent ions of KNbO3 along the 1-direction and
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Table 4. The temperature dependence of the dielectric permittivities ε22 and ε33 in tetragonal
KNbO3 (relative errors: ±15% ) from [4].

Temperature Temperature
(◦C) ε22 ε33 (◦C) ε22 ε33

227 2089 269 362 741 524
255 1548 295 377 724 645
277 1258 316 407 691 1000
300 1000 354 417 691 1174
327 851 416 427 691 1412
342 776 457 430 691 1479

Table 5. The effective charges of the constituent ions of KNbO3 in the tetragonal phase from [3].

Parameter Value Parameter Value

Z∗
1 (K+) = Z∗

2 (K+) 1.000 Z∗
3 (K+) 1.000

Z∗
1 (Nb5+) = Z∗

2 (Nb5+) 4.129 Z∗
3 (Nb5+) 3.459

Z∗
1 (O2−) = Z∗

2 (O2−) −1.71 Z∗
3 (O2−) −1.486

Table 6. Temperature dependence of the calculated spontaneous ionic shifts of the constituent ions
Nb+5, O2−

x , O2−
y and O2−

z of KNbO3 in the tetragonal phase. The spontaneous ionic shift of K+ is
null.

Temperature

(◦C) (s3(Nb5+))0 (s3(O2−
x /O−2

y ))0 (s3(O2−
z ))0

227 0.0566 −0.0916 −0.1058
255 0.0525 −0.0902 −0.0991
277 0.0504 −0.0893 −0.0961
300 0.0488 −0.0883 −0.0939
327 0.0475 −0.0866 −0.0915
342 0.0469 −0.0854 −0.0896
362 0.0458 −0.0833 −0.0859
377 0.0448 −0.0812 −0.0818
407 0.0419 −0.0758 −0.0694
417 0.0406 −0.0734 −0.0637
427 0.0390 −0.0709 −0.0570
430 0.0384 −0.0700 −0.0548

2-direction are null. In figure 1, we report the local field acting on the constituent ions along
the 3-direction as a function of temperature.

Looking at table 6 and figure 1, it is found that the spontaneous ionic shifts and the
spontaneous local field of the Nb5+ and O2−

z ions are greater than those of the K+, O2−
x and

O2−
y ions.

In the tetragonal phase, we can define the amplitude of the anisotropy of the electronic
polarizability δα(j) of the j -ion as follows:

δα(j) = α33(j) − α11(j). (58)

The elements of the electronic polarizability tensor in the spontaneous state (Eext = 0)
are evaluated by considering equation (27), table 3 and figure 1. The calculation shows that
only the diagonal elements αkk(j) are non-null. The calculated values of the amplitude of
the anisotropy of the electronic polarizability δα(j) are reported in figure 2. The analysis of
these results shows that the oxygen O2−

z ion presents an anisotropic electronic polarizability
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Figure 1. The temperature dependence of the 3-direction component of the spontaneous local field
of the ions K+ (full circles), Nb5+ (full triangles), O2−

x /O2−
y (full squares) and O2−

z (full diamonds)
of KNbO3 in the tetragonal phase.

Figure 2. The temperature dependence of the amplitude of the anisotropy of the electronic
polarizability (in absolute values) of the ions K+ (full circles), Nb5+ (full triangles), O2−

x /O2−
y

(full squares) and O2−
z (full diamonds) of KNbO3 in the tetragonal phase.

and that the calculated values of δα(O2−
x ) decrease, absolutely, from 0.5232 at 227 ◦C

to 0.2038 at 430 ◦C. These results are in good agreement with some previous studies
[22, 23].

The spontaneous polarization, P spon, of KNbO3 in the tetragonal phase is defined as the
total polarization of the crystal, whose components Pk are deduced from equation (41), in the
absence of any external field. The calculations show that only the third component, P

spon

3 ,
of the spontaneous polarization is non-null. Its values are reported in figure 3 and show that
P spon increases on cooling.

By using equation (47) we determine the elements ∂Eloc
l (j)/∂E

opt

l′ and therefore the
elements of the optical dielectric constant tensor ε

opt

kl′ (equations (44)–(46)). However, the
refractive indices are deduced from equation (48). The calculated values of the refractive
indices no and ne are reported in figure 4. In figure 5, we report the values of the birefringence
δn as a function of the temperature in the tetragonal phase of KNbO3.
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Figure 3. The temperature dependence of the calculated values of the spontaneous polarization
(full circles) and the measured values (open circle), according to [24], of KNbO3 in the tetragonal
phase.

Figure 4. The temperature dependence of the calculated values of the ordinary (full circles) and
the extraordinary (full triangles) refractive indices of KNbO3 in the tetragonal phase. The open
circles and the open triangles represent, respectively, the measured values of the ordinary and the
extraordinary refractive indices from [25].

The results in figure 4 show that the ordinary refractive index increases when the
temperature increases, while the extraordinary refractive index remains constant when the
temperature changes in the tetragonal phase.

Thereafter, we introduce a much smaller bias field in the 2-direction (Ebias
2 = 10−6 in

CGS esu), and we recalculate the components of the local field and that of the total polarization
by taking account now of the equations (29)–(31). For the values of the elements hk2(j) we use
the procedure of fit described in the previous section and we fit the constant h2 in such a way
that the calculated value of ε22 coincides with the measured value, where the static dieletric
constant ε22 is calculated by using the following expression:

ε22 = 1 + 4π
P2(E

bias
2 )

Ebias
2

. (59)

Then we again calculate the elements of the optical dielectric constant tensor ε
opt

kl (Ebias
2 ) and
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Figure 5. The temperature dependence of the calculated (full circles) and the measured (open
circles from [3] and open squares from [25]) values of the birefringence of KNbO3.

Figure 6. The temperature dependence of the fitted values of the constants h2 (full circles) and h3
(full triangles) in KNbO3.

consequently the refractive index n4(E
bias
2 ). The linear electro-optic coefficient r42 is then

deduced from equation (53).
We now consider a much smaller bias field in the 3-direction (Ebias

3 = 10−6 in CGS esu),
and we recalculate the components of the local field and that of the total polarization. For the
values of the elements hk3(j) we use the procedure of fit described in the previous section, and
we fit the constant h3 in such a way that the calculated value of ε33 coincides with the measured
value, where the static dielectric constant ε33 is calculated using the following expression:

ε33 = 1 + 4π
P3(E

bias
3 ) − P

spon

3

Ebias
3

. (60)

We then calculate the elements of the optical dielectric constant tensor ε
opt

kl (Ebias
3 ) and

consequently the refractive indices n1(E
bias
3 ) and n3(E

bias
3 ). The linear electro-optic coefficient

rc (defined above) is calculated from the linear electro-optic coefficients r13 (equation (51))
and r33 (equation (52)).

In figure 6, we report the fitted values of h2 and h3 as a function of the temperature.
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Figure 7. The linear electro-optic coefficient rc (full squares) in the tetragonal phase of KNbO3 as
a function of the temperature. The open squares represent the measured values from [4].

Figure 8. The linear electro-optic coefficient r42 in the tetragonal phase of KNbO3 as a function
of the temperature. The open circle represents the measured value from [4].

Looking at table 4 and figure 6, it is found that ε22 decreases as the constant h2 decreases
on cooling, whereas ε33 increases as the constant h3 increases. Figure 7 corresponds to the
temperature dependence of the linear electro-optic coefficient rc and figure 8 represents the
temperature dependence of the coefficient r42.

Looking at figure 7 it is found that the linear electro-optic coefficient rc, along with the
dielectric permittivity ε33 (table 4) and the constant h3 (figure 6), increases on cooling. On the
other hand, figure 8 shows that r42, along with the dielectric permittivity ε22 (table 4) and the
constant h2 (figure 6), decreases when the temperature increases.

The theoretical results of the refractive indices, the birefringence and the linear electro-
optic coefficients are in good agreement with the results obtained by Bernasconi et al [5] and
are in accordance with the ‘Bond anharmonic polarizability model’ [2] usually used to explain
the linear and nonlinear optical properties of some oxygen-octahedra ferroelectrics such as
KNbO3 [26, 27].

These calculations show that the experimental data of the physical properties above
mentioned can be mainly explained by considering nonlinear and anisotropic electronic
polarizabilities, particularly the contribution of the oxygen ion O2−

z .
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Appendix

The energy I of the system can be written as

I =
∫

ψ∗Hψ dv∫
ψ∗ψ dv

. (A1)

By using the equations (4) and (A1), the energy I can be expressed as

I = I0 + 2λe
∑

k E2
k 〈x2

k 〉 + λ2 ∑
k E2

k 〈xkH0xk〉
1 + λ2

∑
k E2

k 〈x2
k 〉

. (A2)

The terms with odd powers of xk are omitted because they are nulls when the wavefunction
ψ0 is replaced by the real form of the wavefunction ψnlm used in this work (equation (19)).
This assumption can be shown by considering the parity of the real form of the wavefunctions,
ψnlm, and that of the odd powers of xk .

In the equation (A2), I0 is the energy in E = 0. By assuming that the wavefunction ψ0 is
normalized to unity, namely 〈ψ0 | ψ0〉 = 1, I0 can be expressed as

I0 =
∫

ψ∗
0 H0ψ0 dv. (A3)

In the equation (A2), the index k (k = 1, 2, 3) represents the directions x, y and z. The
terms 〈x2

k 〉 and 〈xkH0xk〉 are written as

〈x2
k 〉 =

∫
ψ∗

0 x2
k ψ0 dv (A4)

〈xkH0xk〉 =
∫

ψ∗
0 xkH0xkψ0 dv. (A5)

By using the variational principle, namely dI = 0, we can calculate the value of λ and
determine the wavefunction ψ(λ) under the electric field by the condition

∂I

∂λ
= λ2e

(∑
k

E2
k 〈x2

k 〉
)2

+ λ

(
I0

∑
k

E2
k 〈x2

k 〉 −
∑

k

E2
k 〈xkH0xk〉

)
− e

∑
k

E2
k 〈x2

k 〉 = 0. (A6)

In quantum mechanics, one can show that

〈xkH0xk〉 = 〈x2
k 〉I0 +

h̄2

2m
. (A7)

By using the equations (A6) and (A7) and by replacing
∑

k E2
k and E2, we get

λ = E2h̄2

2m
±
[

E4h̄4

4m2
+ 4e2

(∑
k

Ek〈x2
k 〉
)3]1/2

2e

(∑
k

E2
k 〈x2

k 〉
)−2

. (A8)

Since only the smaller solution of λ is meaningful in equation (A8) under the minimum
condition of the energy, we adopt now the solution having the minus sign.

Expanding the equation (A8) until the square of E, we can express λ by the following
equation:

λ = − 2

aBeE2

∑
k

E2
k 〈x2

k 〉
[

1 − 4

a2
Be2E4

(∑
k

E2
k 〈x2

k 〉
)3]

(A9)

where aB means the Bohr radius h̄2/me2.
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