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Abstract. The microscopic mechanisms of refractive indices, birefringence, spontaneous
polarization and linear electro-optic effects are examined for KNbO3 using a microscopic model
which takes into account a quantum method based upon the orbital approximation and the
dipole—dipole interaction due to the local field acting on the constituent ions. It is found that
the electronic polarizabilities play a major role in these calculations and that the birefringence én
and the linear electro-optic coefficients are in good agreement with the experimental data.

1. Introduction

Potassium niobate, KNbOj3, like barium titanate, BaTiOs, is a crystal of the perovskite family
and has been the object of many theoretical and practical investigations. This material exhibits
a sequence of ferroelectric phase transitions. At high temperature, KNbOj; is para-electric
with a cubic structure. Upon cooling, this material undergoes successive structural phase
transitions [1]. All these phase transitions are strongly of first-order character and related to a
large thermal hysteresis [2], a remarkable optical anisotropy [3] and large electro-optic effects
[4-T].

In a previous work, Giinter has measured the temperature dependence of the electro-optic
coefficient r.. It is found that this coefficient depends strongly on the temperature [4]; it
increases when the temperature approaches the cubic—tetragonal transition. Previous works
on ferroelectrics and optical properties of KNbOj3 [8], and linear electro-optic coefficients r;3
and r33 of pure and Fe-doped BaTiOs, of the same family [9, 10], show that the electronic
polarizabilities play an important role.

The aim of this paper is to study the temperature dependence of the refractive indices,
the birefringence, the spontaneous polarization and the linear electro-optic coefficients r, =
R33 — (ng/n.)%r13 and ryy of KNbO; in the tetragonal phase by using a microscopic model
which takes account of the electronic polarizabilities of the constituent ions.

In this article we discuss, in section 2, the electronic polarizabilities of the ions of
KNbO; by using a quantum method based upon the orbital approximation, in section 3, the
dipole—dipole interaction due to the local field acting on the constituent ions, in section 4, the
electro-optic effects description. Finally, section 5 is devoted to some results and discussions.

0953-8984/00/102317+15$30.00 © 2000 IOP Publishing Ltd 2317



2318 H Chaib et al
2. Quantum method description

In order to compute the electronic polarizabilities of tetragonal KNbO3, we used a quantum
method based upon the orbital approximation. In this approach, each ion is considered as
a combination of a core (inner electrons and nucleus) and a shell (outer electron). The
Hamiltonian of the core—shell system is written

H = Hy+ H; (1)
with
2
p Z,
Hy=——— 2
"7 om Re @
H =¢E-R 3)

where H) represents the Hamiltonian in the absence of the local field and H| the electrostatic
energy under the electric field. For small values of the electric field, the energy H; can be
considered as a perturbation. In equation (2), Z is the effective charge of the core for the outer
electron considered. In (3), E is the local field acting on a given ion and R is the distance
from the core to any point of the wavefunction describing the shell of this ion.

Writing the wavefunction in E = 0 as v, we assume that the wavefunction of the
core—shell system under the electric field can be expanded as a linear series of perturbations.
In this case, it can be described by the variational parameter A as [11]

v(A) =1 +AE - R)Yo. “

By using the variational principle, namely d/ = 0, where I is the energy of the system we can
express A by the following equation (see the appendix)

2

4 3
)\z_aBeEZZk:E’z(x’b[]_W<;E’E<x’g)>:| 5

where aj is the Bohr radius 72/ me?.
The dipole moment p of the core—shell system described by the wavefunction i is
expressed as

— “Ryrd
p={ o) [y*Ry dv

(©)
vy d
The component of p in the [-direction (I = 1, 2, 3) is written
(=e) [ ¥*(M)xp (1) dv —2eME;(x?)
P = f ! = Al @)

[y yydv  — 1+R2Y EXxp)

By replacing A by its expression in the lastequation, and by expandingin (3", EZ(x?))’/a3e?E*
which is much less than one (this assumption can be justified by using the values of the local
field reported in table 5), we obtain

A E2(52 3 ’
b= 2 Ei () [1 - o (;E,f(x,f)> ]E1<x12)- ®)

ClBE2

In the case of tetragonal KNbQOj3, the component of the local field in the direction of the
spontaneous polarization, namely the 3-direction, is greater than those in the other directions.
This implies that

E} 5 ~
D =0 ©)
k
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then

212 2,3
= 4(x3) (x7) (1 ~ 8{x3)

ap

Ez) E, (10)

2,2
age

The (k, [) element of the electronic polarizability tensor is determined as follows [12]:

9Pk
=0 11
X =5 E, (11)
By using the equation (10), we can express ay; for a considered r-orbital as follows:
oty = pldu — 0 (E*8 +2E¢E))] (12)
where
* 4 2 2
o = —(x3) (xic)s (13)
ap
and
* 8 2,\3
b = —=— 3 (14)
aBe

In equation (12) 8y, represents the Kronecker symbol.

We assume the electronic polarizability of a considered j-ion in the k-direction (k =
1,2, 3) as the sum of the contribution of respective orbitals, namely that which can be
represented by

() =Y ar (). (15)
Equation (12) can then berrearranged as

o (j) = &g (N8 — O (DE> ()8 + 2E () E1()))] (16)
where

ar ()= ef, () (17)
and ’

O(j) = % (18)

For the calculation of the electronic polarizabilities of the K*, Nb>* and 0%~ ions we have
used the Slater-type orbitals [11]

Wnim = 9{nl(R)Ylm(es 40) (19)

where n, | and m represent the principal, azimuthal and magnetic quantum numbers,
respectively, and R, 6 and ¢ are the spherical coordinates.
The radial part R,,;(R) of equation (19) can be written [13]

mnl (R) — (21—~n1)n’+(1/2) (2n/ !)—1/2Rn'—l e—r,,[/R (20)
with
an
v = s @1

where n’ represents the effective quantum number and n represents the principal quantum
number.
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In equation (19), Y;,,(8, @) are the spherical harmonics represented as [13]

. 2+ 31— mD\" i
@) = (- (JEEOE I el os gyene

by the associated Legendre functions P,‘m‘ (cosB).

In order to take into account the directional character of the chemical bond, one usually
uses the real forms of the wavefunctions, obtained by linear combination [14].

By using the equations (13) and (14) and the following expressions of (x,f wk=1,2,3),
we can determine o, (j) and 6 (j) of a given r orbital of the j-ion:

(x1), = (R*)u(sin’ 6 cos® @) (23)
(x3), = (R*),u(sin” 0 sin” @), (24)
(x3), = (R*){cos® 0),, (25)
with
(R?) n*(n' + 1) (n/ + 1) aj (26)
nl = 5 5
2 Zil

The values of (sin® 6 cos? @) im> (sin’ 6 sin’ @) and {cos?),,, for the orbitals considered
are reported in table 1.

Table 1. The values of (sin2 0 cos? O)im>s (sin2 6 sin? @) 1m and (cos? 0);,, for the orbitals considered.

Orbital  (sin® @ cos? @)y, (sin® O sin® @) (€082 0)pm

s

Px

py

Pz
dea_yo
dy;

d,

dy;
dyy

[ e e P

= W N‘_ QW Y= LW U= U= W|—

EN[[SSREN[N) I\J‘m N= W = DW= W=

QL = |

In order to calculate the coefficients ¢ (j) of a given j-ion, we used an anisotropic effective
charge for the outer electronic layer of this ion, and fitted its components in such a way that
the calculated values of the free electronic polarizabilities o} (j), @3 (j) and a3 () coincided
with the measured value of the free electronic polarizability «®? (j) of the same ion. The free
electronic polarizabilities are calculated in E = 0.

The effective charges of the outer layers are determined by the Slater rules [16], and their
fitted values are reported in table 2. The values of the measured «“*”(j) and the calculated
0 (j) are reported in table 3.

Finally, the elements of the electronic polarizabilities tensor of the j-ion, which are used
in the following section, are deduced from table 3 and the next relation.

a(j) = @ () — o (G)(E* (/) + 2Ex () E1(j)] 27)
In the following section, local field E is labelled E'*°.
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Table 2. The fitted values of the effective ionic charges of the outer layers of the constituent ions

of KNbOs.

Jj-ion Effective ionic charges

K* Z§) =7.20294 Z{) =17.20294 z§) =8.55801

ND™* o Z§) = Z() =2031443  Z0) = 7)) =2031443  Z{) = Z{) =2434719
0 zZ§) =333511 zg) =3.33511 Z§) =3.95895

Table 3. The measured free electronic polarizabilities «®*? (in A3) and the calculated values of the
coefficients 6 (in 10~1° CGS esu) of the constituent ions of KNbOj3.
j-on a®P(j)  61()) 02(j) 03(j)

K* 1.9458 110.520  110.520  206.290
Nb>*  0.1859 1.582 1.582 2.881
0>~ 2.3940 152.860  152.860  285.850

3. Dipole-dipole interaction

Writing the strains parallel to the [100], [010] and [001] directions as A;, A, and As,
respectively and the shearings concerning the (100), (010) and (001) planes as §;, §, and
383, respectively, we can determine the distance r(i, j) between the i- and j-ions as follows:

1+ A] 53 52
r(i, J) =< &  1+A, 5 )r(i,j>°+<s<i> —s(j)) (28)
62 é 1 1+ A3

where r(i, j )0 represents the distance between the i- and j-ions in the cubic phase and s(i)
and s(j) represent the shifts of the i- and j-ions respectively.

In order to study the electro-optic effects, we have taken account of the variation of the
strains, shearings and the ionic shifts under the bias electric field E?"a5 | These variations are
determined as follows:

3
Ap= (A + ) dyE['™ (29)
=1
3 .
8= 80"+ digsn E[™ (30)
=1
3 .
sk () = (seGN° + D ha(EP™ €3]

=1
where (Ar)°, (8;)° and (s¢(j))° represent the spontaneous strains, shearings and ionic shifts
respectively, dj;. are the piezoelectric coefficients and /() represents the induced shift of the
Jj-ion per unit of field.

The volume of the unit cell can be written as
v=ag[(1+ A1+ A)(1+A3) — 1+ ADE) — (1+A2)(82)° — (1+ A3)(8)°

+26818283] (32)

where q is the lattice constant in the cubic phase.

The local field acting on the i-ion in the k-direction is expressed as [16]

5 3
E(0) = B+ 303 Taei, e, ) 49

j=1k=l
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with

.. 3r (i, vy J) = S llr (s DI
T i) =) I DI '

In equation (33), E“*' represents an external electric field, which is in general the sum of
the bias field E”“S and the optical electric field E°P': E*' = E% 4+ E°P' In equation (34)
the indices (I, m, n) represent the coordinates of a unit cell in the whole lattice: & is the
Kronecker symbol; the indices i and j represent the constituent ions of the unit cell. The
dipole moment along the k’-direction, p,/((i , J), can be expressed as

pei, j) = pi () + P, j) (35)

(34)

I,m,n

where

peG) =Y ar(HE () (36)

3
I=1
represents the electronic dipole moment and

PR (G ) = ZE (el () = s()) (37)
represents the ionic dipole moment in the k’-direction. In equation (36), oy () represents the
(k'l) element of the electronic polarizability of the j-ion given by equation (27), and Z},(j) in
equation (37) represents the effective ionic charge in the k’-direction of the j-ion. The local
field acting on the i-ion on the k-direction can be written as

5 3
DO Suli, HE () = Qi) (38)
j=11=1
with
3
Sii(i, j) = 01idij — Z T (i, o (J) (39)
k'=1
and
5 3 )
Qi) = E{ + Y 3 T ) pia (i ) (40)
j=1k'=1

By solving equation (38) we can determine the (/, j) component, EZZ""( j), of the local
field. The total polarization is expressed as

1 ‘
Pe= =3 (pi(i)+ " () (41)
j=1
with
P () = Zi(jesk (). (42)

The relation between the dielectric constant &, -, polarization P, and the bias electric field
ELes is
0P

& = Sk + 47[m.
E!

(43)

When the external field is of optical origin, the optical dielectric constant 8;;5{ can be

expressed as

0, 8Pk
e = S +4m o (44)

14
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where

opr(j)
aE,”,”’ T Z VET 45)
By using equation (36), the dp; (j)/d E,”" term can be written as

() < LAEP ()
g = Zakz(nw. (46)
14 =1

Here the term 9 E/°°(j)/dE,"”" can be evaluated by solving the following equation:

5 3 loc :
E;”(j)
Z Z Sk, ﬁ = Ok 47
AE,"
j=1I1=1 v

which is deduced from equation (38). In electromagnetism, one proves that in a dielectric
medium characterized by the optical dielectric impermeability tensor 77" = (§°P")~!, the
refractive index, when the light is polarized in the direction of the unit vector w(uy, us, us), is
expressed as

3 3 —1/2
= <Zzn;’;”uku,> . (48)
k=1 I=1

The refractive indices depend on the amplitude and the direction of the applied field (namely
n = n(E%%)) because 77" = ort (Eba5),
We distinguish here three particular cases.

e The light is polarized in the 1-direction (namely u; = 1, u, = u3 = 0). The refractive
index in this case is n; (E**) = (n{}")~'/2. When E"® = 0, we obtain the ordinary
refractive index ng.

e The light is polarized in the 3-direction (namely u; = u, = 0, u3 = 1). The refractive
index in this case is n3(E*“%) = (34')~"/2. When E** = 0, we obtain the extraordinary
refractive index n,.

e The light is polarized at 45° in the x,x3 plane (namely uy =0, up = uz = 2-'2). The
refractive index in this case is ny (B = [ + n5h + 3 + n3e')/217/2. When
EP%s = (, we obtain the refractive index no4.

4. Electro-optic effects description

In tetragonal KNbOj3 only the electro-optic coefficients 7|3 = ry3, r33 and r4p = r5; are non-null
[17]. The optical indicatrix, under the applied electric field E*** can be written as

1 . 1 . . )
b 2 2 bias 2 bias b
<_n2 +7‘13E3ms (xl +x2) + _n2 + 7‘33E3w3 X3+ 2r42E1"”x1x3 + 2r42E2"”x2x3 =1 (49)

o e

where x1, x, and x3 are the Cartesian coordinates.

In general, the change of the optical dielectric impermeability An¥? ! m=1,2,3,4,5,6
is the contracted Voigt notation) [17], the electro-optic coefficient r,,; (I' = 1, 2, 3), and the
applied field E [b,"‘” are connected by the following equation:

3

AnoP = Z P E21S. (50)
I'=1
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When the bias field is parallel to the 3-axis, Eba5(0, 0, E;’i %), the electro-optic coefficients
r13 and r33 can be expressed as
_ 2In (E%) —n,)

ias (51)
nyES

ri =

and
2[n3(E3) — nel
r3 = T e (52)
When the bias field is parallel to the 2-axis, Ebias (0, Eg ias ), the electro-optic coefficient
4y can be expressed as
20 (EY) — ol
R
The lattice parameters, the effective ionic charges, the spontaneous ionic shifts, the
piezoelectric coefficients and the dielectric constants are experimental data. The coefficients
hy(j) can be evaluated by using a fit that takes into account the experimental data of the
dielectric constants.
When the applied electric field is along the 3-direction, we obtain

hi3(j) = h23(j) =0 and h33(j) # 0. (54)

These induced ionic shifts are the results of the Coulomb interactions induced by the
change of the local field under the bias electric field. We assume that

hss,j = h3Z5(j) (55)

where /3 is a constant.
When the applied electric field is along the 2-direction, we obtain

ryp = (53)

hi2(j) =0 hx(j) #0 and h32(j) # 0. (56)
We assume that
ho(j) = haZ5(j) and h3(j) = ha Z3(j) (57)

where h; is a constant. In order to compute the /13 and /1, constants, we assume that e$3' = 33"

cal __ ,exXp :
and &5 = ¢&,," respectively.

5. Results and discussion

The calculations of the spontaneous polarization, the ordinary and extraordinary refractive
indices n, and n,, respectively, the birefringence én = n.n — n,, and the linear electro-
optic constants r. = r3z — (n,/ n.)?ri3 [4] and r4y, are carried out at various temperatures in
the tetragonal phase of KNbOs. For our calculations, we used the temperature dependence
of the lattice parameters [18], the dielectric constants reported in table 4 and the effective
ionic charges reported in table 5. The spontaneous ionic shifts used in this calculation
(table 6) are calculated from a microscopic model based upon the mean field approximation
[19-21].

The spontaneous local field E*?°" corresponds to the value of the local electric field E'*¢
in the absence of any external electric field (E*’ = 0). The values of this field are calculated
by solving the self-consistent equation (equation (38)) after having evaluated the elements of
Su (i, j) (equation (39)) and Qy (i) (equation (40)). The calculation shows that the values of
the spontaneous local field acting on the constituent ions of KNbOj; along the 1-direction and
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Table 4. The temperature dependence of the dielectric permittivities £y and €33 in tetragonal
KNbO3 (relative errors: £15% ) from [4].

Temperature Temperature

0 €22 ez (°O) €2 £33
227 2089 269 362 741 524
255 1548 295 377 724 645
2717 1258 316 407 691 1000
300 1000 354 417 691 1174
327 851 416 427 691 1412
342 776 457 430 691 1479

Table 5. The effective charges of the constituent ions of KNbO3 in the tetragonal phase from [3].

Parameter Value  Parameter  Value

Z¥(K*) = Z5(K") 1.000  Z3(K") 1.000
ZE(ND™Y) = Z3(Nb™) 4129 Z3(Nb™*)  3.459
ZHO*)=2Z50%) —171  Zi(0*) -—1486

Table 6. Temperature dependence of the calculated spontaneous ionic shifts of the constituent ions
Nb*, 0)2(’, O%.’ and Og’ of KNbOj3 in the tetragonal phase. The spontaneous ionic shift of K* is

null.

Temperature

0 (s3(ND™)0 (53027 /07 1)) (s3(0F7))°
227 0.0566 —0.0916 —0.1058
255 0.0525 —0.0902 —0.0991
277 0.0504 —0.0893 —0.0961
300 0.0488 —0.0883 —0.0939
327 0.0475 —0.0866 —0.0915
342 0.0469 —0.0854 —0.0896
362 0.0458 —0.0833 —0.0859
377 0.0448 —0.0812 —0.0818
407 0.0419 —0.0758 —0.0694
417 0.0406 —0.0734 —0.0637
427 0.0390 —0.0709 —0.0570
430 0.0384 —0.0700 —0.0548

2-direction are null. In figure 1, we report the local field acting on the constituent ions along
the 3-direction as a function of temperature.

Looking at table 6 and figure 1, it is found that the spontaneous ionic shifts and the
spontaneous local field of the Nb>* and Og‘ ions are greater than those of the K, 0)2(‘ and
Oi’ ions.

In the tetragonal phase, we can define the amplitude of the anisotropy of the electronic
polarizability S« () of the j-ion as follows:

ba(j) = a3 () — a11())- (58)

The elements of the electronic polarizability tensor in the spontaneous state (E*" = 0)
are evaluated by considering equation (27), table 3 and figure 1. The calculation shows that
only the diagonal elements o (j) are non-null. The calculated values of the amplitude of
the anisotropy of the electronic polarizability S« (j) are reported in figure 2. The analysis of
these results shows that the oxygen O%’ ion presents an anisotropic electronic polarizability
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L 4

Figure 1. The temperature dependence of the 3-direction component of the spontaneous local field
of the ions K* (full circles), Nb>* (full triangles), 0)2(_ /Oﬁ_ (full squares) and Og_ (full diamonds)
of KNbOs in the tetragonal phase.

S0t (in absolute value) (A %)

k=4
—
=3

(L T e e S S S S = & =
200 240 280 320 360 400 440
Temperature (°C)

Figure 2. The temperature dependence of the amplitude of the anisotropy of the electronic
polarizability (in absolute values) of the ions K* (full circles), Nb>* (full triangles), Oﬁ_/Of,_

(full squares) and O?‘ (full diamonds) of KNbO3 in the tetragonal phase.

and that the calculated values of 80{(0)26‘) decrease, absolutely, from 0.5232 at 227°C
to 0.2038 at 430°C. These results are in good agreement with some previous studies
[22,23].

The spontaneous polarization, P*P°", of KNbOj; in the tetragonal phase is defined as the
total polarization of the crystal, whose components P, are deduced from equation (41), in the
absence of any external field. The calculations show that only the third component, P;"”"
of the spontaneous polarization is non-null. Its values are reported in figure 3 and show that
P*Po" increases on cooling.

By using equation (47) we determine the elements 9 E/°°(j)/dE,”" and therefore the
elements of the optical dielectric constant tensor e,‘(’f/’ (equations (44)—(46)). However, the
refractive indices are deduced from equation (48). The calculated values of the refractive
indices n, and n, are reported in figure 4. In figure 5, we report the values of the birefringence

dn as a function of the temperature in the tetragonal phase of KNbOs.

i
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Figure 3. The temperature dependence of the calculated values of the spontaneous polarization
(full circles) and the measured values (open circle), according to [24], of KNbO3 in the tetragonal
phase.
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Figure 4. The temperature dependence of the calculated values of the ordinary (full circles) and
the extraordinary (full triangles) refractive indices of KNbOj3 in the tetragonal phase. The open
circles and the open triangles represent, respectively, the measured values of the ordinary and the
extraordinary refractive indices from [25].

The results in figure 4 show that the ordinary refractive index increases when the
temperature increases, while the extraordinary refractive index remains constant when the
temperature changes in the tetragonal phase.

Thereafter, we introduce a much smaller bias field in the 2-direction (E'z’i““ = 10"%in
CGS esu), and we recalculate the components of the local field and that of the total polarization
by taking account now of the equations (29)—(31). For the values of the elements %, (j) we use
the procedure of fit described in the previous section and we fit the constant 4, in such a way
that the calculated value of &5, coincides with the measured value, where the static dieletric
constant &5, is calculated by using the following expression:

Pz(EgiaS)

€y = 1+4n Ebias
2

(59)

Then we again calculate the elements of the optical dielectric constant tensor &, t(Eé”"”) and
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Figure 5. The temperature dependence of the calculated (full circles) and the measured (open
circles from [3] and open squares from [25]) values of the birefringence of KNbO3.
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Figure 6. The temperature dependence of the fitted values of the constants %, (full circles) and /3
(full triangles) in KNbO3.

consequently the refractive index n4(E§i“S). The linear electro-optic coefficient r4, is then
deduced from equation (53).

We now consider a much smaller bias field in the 3-direction (Eé”"” = 10%in CGS esu),
and we recalculate the components of the local field and that of the total polarization. For the
values of the elements /3 (j) we use the procedure of fit described in the previous section, and
we fit the constant /3 in such a way that the calculated value of ¢33 coincides with the measured
value, where the static dielectric constant 33 is calculated using the following expression:

P3(E§im) _ P;P””

g3 =1+4nm bias
E3

(60)

We then calculate the elements of the optical dielectric constant tensor EZf t(Eé""”) and
consequently the refractive indicesn| (E é’ a5y and n3(E é’ ias) The linear electro-optic coefficient
r. (defined above) is calculated from the linear electro-optic coefficients rj3 (equation (51))
and r33 (equation (52)).

In figure 6, we report the fitted values of &, and h3 as a function of the temperature.
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Figure 7. The linear electro-optic coefficient . (full squares) in the tetragonal phase of KNbO3 as
a function of the temperature. The open squares represent the measured values from [4].
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Figure 8. The linear electro-optic coefficient 4 in the tetragonal phase of KNbO3 as a function
of the temperature. The open circle represents the measured value from [4].

Looking at table 4 and figure 6, it is found that &5, decreases as the constant /1, decreases
on cooling, whereas ¢33 increases as the constant /3 increases. Figure 7 corresponds to the
temperature dependence of the linear electro-optic coefficient 7. and figure 8 represents the
temperature dependence of the coefficient r4;.

Looking at figure 7 it is found that the linear electro-optic coefficient r., along with the
dielectric permittivity £33 (table 4) and the constant /5 (figure 6), increases on cooling. On the
other hand, figure 8 shows that 74, along with the dielectric permittivity €, (table 4) and the
constant h, (figure 6), decreases when the temperature increases.

The theoretical results of the refractive indices, the birefringence and the linear electro-
optic coefficients are in good agreement with the results obtained by Bernasconi et al [5] and
are in accordance with the ‘Bond anharmonic polarizability model’ [2] usually used to explain
the linear and nonlinear optical properties of some oxygen-octahedra ferroelectrics such as
KNbO;3 [26, 27].

These calculations show that the experimental data of the physical properties above
mentioned can be mainly explained by considering nonlinear and anisotropic electronic
polarizabilities, particularly the contribution of the oxygen ion O?’.
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Appendix
The energy [ of the system can be written as
*Hyr d
p o [y HY (AD)
[y dv
By using the equations (4) and (A1), the energy I can be expressed as
_lo+22ey, EZ(x2) + A2 Zk EX kaoxk) (A2)

1+A2Y EZ(x?)
The terms with odd powers of x; are omitted because they are nulls when the wavefunction
Yy is replaced by the real form of the wavefunction ¥, used in this work (equation (19)).
This assumption can be shown by considering the parity of the real form of the wavefunctions,
Wi, and that of the odd powers of x;.
In the equation (A2), I is the energy in E = (0. By assuming that the wavefunction v is
normalized to unity, namely (Y | ¥o) = 1, Iy can be expressed as

Io=/l/f§H01/fodv- (A3)

In the equation (A2), the index k (k = 1, 2, 3) represents the directions x, y and z. The
terms (xk) and (x; Hox;) are written as

(xF) / Vexto dv (A4)

(i Hoxe) = f Wi Hoxe o v (A5)

By using the variational principle, namely d/ = 0, we can calculate the value of A and
determine the wavefunction v (A) under the electric field by the condition

=% <Z EX(x? ) +,\(10 Y ENx) - E,f(kaoxk>> —e Y EXxp) =0. (A6)
k k k
In quantum mechanics, one can show that

hZ
(xx Hoxy) = (x)Io + py (AT)

By using the equations (A6) and (A7) and by replacing Y, E7 and E?, we get

E2h2 E4h4 3q1/2 -2
h=— i[4m2 +4ez<2k:Ek(x,f))i| 2e<Xk:E,§<x,§>> ) (A8)

Since only the smaller solution of X is meaningful in equation (A8) under the minimum
condition of the energy, we adopt now the solution having the minus sign.

Expanding the equation (A8) until the square of E, we can express A by the following
equation:

A= aBeE2 ZEk x7 [ 2E4<2Ek X7 ) } (A9)

where ag means the Bohr radius 712 /me?.
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